
Introduction

Liquid neural networks, a relatively new concept, represents a paradigm shift in how we

design, train, and deploy computational models inspired by biological systems. Unlike

traditional deep neural networks, which generally rely on fixed architectures and static

parameters once trained, liquid neural networks—often referred to as liquid time-constant

networks—are dynamic, continually adapting their internal parameters in response to

changing inputs and conditions. It draws inspiration from how natural biological neurons

operate in real neural circuits, where synaptic strengths and temporal patterns of neural

firing evolve continuously, enabling brains to adapt to unpredictable environments.

Fig1: An image of the brain with continuous neural firings

Conventional deep learning models have achieved remarkable success in tasks such as

image classification, language translation, and speech recognition. However, their rigid

architectures and reliance on large, static datasets often leave them ill-suited for scenarios

where conditions fluctuate rapidly or data is scarce. For instance, robotic agents operating in

uncertain environments need to learn and adapt on-the-fly [1]. Similarly, autonomous

vehicles must dynamically respond to variations in tra!c patterns, weather conditions, or

road anomalies. Liquid neural networks provide a mechanism for continuous adaptation,

allowing these systems to not only perform well in dynamic contexts but also to generalize

e"ectively beyond their training conditions [2] .

Fig 2: Visualization of dynamical contexts which can be addressed by a Liquid Neural Network

Research into liquid neural networks is still in its early stages, yet the initial results are

promising. By merging ideas from computational neuroscience, dynamical systems theory,

and machine learning, liquid neural networks hold the potential to push the boundaries of

what artificial systems can achieve.

"We are thrilled by the immense potential of liquid neural networks, as it lays the groundwork for

solving problems that arise when training in one environment and deploying in a completely

distinct environment without additional training. These flexible algorithms could one day aid in

decision-making based on data streams that change over time, such as medical diagnosis and

autonomous driving applications" - Daniela Rus, CSAIL director and the Andrew (1956) and Erna

Viterbi Professor of Electrical Engineering and Computer Science at MIT.

Background

The conceptual roots of liquid neural networks can be traced back to a lineage of research

focused on bridging continuous-time dynamical systems with artificial intelligence. Well

before the term “liquid neural networks” entered the lexicon, computational neuroscientists

and machine learning researchers were investigating biologically inspired models that adapt

their internal parameters in real time. Early groundwork came from the study of continuous-

time recurrent neural networks (CTRNNs) [3], which used di"erential equations to capture

the evolving state of neurons over time, and liquid state machines (LSMs) [4], which

employed biologically plausible spiking units and reservoir computing principles to process

time-varying inputs. These foundational ideas provided the fertile conceptual soil from which

the notion of liquid neural networks would emerge.

In the years leading up to the formal introduction of liquid neural networks, there was a

growing recognition that conventional artificial neural architectures—often reliant on

discretized time steps and fixed parameters—could not fully replicate the flexibility and

adaptability observed in natural brains. Researchers at MIT CSAIL and other institutions

began to probe this limitation more deeply, asking: Could we design networks that

inherently adjust their dynamics as conditions change? This question set the stage for the

eventual invention of liquid time-constant networks, a primary instance of liquid neural

networks.

The key breakthrough came from a team led by Daniela Rus, Director of MIT CSAIL, and first

author Ramin Hasani. Drawing upon their interdisciplinary backgrounds in robotics,

dynamical systems, and computational neuroscience, the team devised a framework that

introduced parameters governing neural dynamics as functions that continuously vary in

time. They called these Liquid Time-Constant Neural Networks (LTCs) [2].

LTCs consists of a novel architecture where neurons dynamically adjust their time-constants

based on input and hidden states. This is inspired by the dynamics of non-spiking biological

neurons, emphasizing adaptability and stability in learning systems.

Methods

Here is a deep dive into the inner workings of an LTC, which is unfortunately, sparsely / not

well covered in research papers. I wanted to get into the depths of what LTCs actually consist

of, and why have they been constructed the way they are. I then show you important

insights into its workings, through some clever design of experiments and analysis.

Derivation of LTC Model

Let us begin with the basic dynamics of a neural system represented by the state variable

, which evolves over time as a function of input , time , and parameters . The most

general form of such a system is an ODE given by:

However, this approach relies heavily on implicit nonlinearities in the neural network ,

which limits its ability to capture complex temporal patterns. To overcome this, LTC

networks introduce dynamic time-constants that depend on the input and state .

This adjustment enables neurons to act as specialized dynamical systems for di"erent input

features, enhancing the system's expressivity.

x(t) I(t) t θ

dx(t)
dt

= f(x(t), I(t), t, θ) (1)

f

I(t) x(t)

1. Adding a Linear Decay Term

To ensure stability and bounded dynamics, a linear decay term proportional to the state

 is introduced. This modifies the equation to:

Here:

: Linear decay term, where is the time constant.

: Nonlinear term capturing the influence of inputs and parameters.

2. Introducing a Modulating Nonlinearity

We further enhance the system by defining as a product of a nonlinear

function and a term representing the equilibrium level :

Substituting this into the equation gives:

3. Expanding the Dynamics

We expand the second term to separate the influence of :

Combining terms involving , we get:

4. Defining the Liquid Time Constant

The e"ective time constant is defined as:

5. Final Dynamics

Hence, the final governing equation for the LTC Network is:

x(t)

dx(t)
dt

= −
x(t)

τ
+ f(x(t), I(t), t, θ) (2)

− x(t)
τ

τ

f(x(t), I(t), t, θ)

f(x(t), I(t), t, θ)
g A − x(t)

f(x(t), I(t), t, θ) = g(x(t), I(t), t, θ) ⋅ (A − x(t)) (3)

dx(t)
dt

= −
x(t)

τ
+ g(x(t), I(t), t, θ) ⋅ (A − x(t)) (4)

x(t)

dx(t)
dt

= −
x(t)

τ
− g(x(t), I(t), t, θ) ⋅ x(t) + g(x(t), I(t), t, θ) ⋅ A (5)

x(t)

dx(t)
dt

= − [1
τ

+ g(x(t), I(t), t, θ)] ⋅ x(t) + g(x(t), I(t), t, θ) ⋅ A (6)

τsys

1
τsys

=
1
τ

+ g(x(t), I(t), t, θ) (7)

The neural network not only determines the derivative of the hidden state , but also

serves as an input-dependent varying time-constant for the learning

system. The time constant characterizes the speed and coupling sensitivity of an ODE. This

property enables single elements of the hidden state to identify specialized dynamical

systems for input features arriving at each time-point. Hence, these models were given the

name: liquid time-constant recurrent neural networks (LTCs). LTCs can be implemented by

an arbitrary choice of ODE solvers.

This formulation ensures that the dynamics of LTC networks are not only stable but also

bounded, a critical requirement for real-world time-series modeling where inputs may grow

unbounded.

Trainable Parameters in LTC Implementation

Parameter Definition Role

1 gleak
Leak conductance for each
neuron.

Controls how quickly the neuron’s state decays
toward its resting potential.

2 vleak
Leak reversal potential (resting
state) for each neuron.

Defines the baseline voltage to which the
neuron decays in the absence of input.

3 cm
Membrane capacitance for
each neuron.

Determines the neuron’s ability to store charge,
affecting input integration.

4 sigma
Scaling factor for sigmoid
gating between neurons.

Modulates the strength of synaptic activation
based on neuron states.

5 mu
Offset for the sigmoid gating
function.

Controls the sensitivity of neuron interactions to
presynaptic signals.

6 w
Synaptic weights between
neurons.

Defines the strength of recurrent connections.

7 erev Synaptic reversal potential.
Sets the equilibrium potential that synaptic
currents drive neurons toward.

8 sensory_sigma
Scaling factor for sigmoid
gating of sensory inputs.

Modulates the sensitivity of neurons to external
inputs.

9 sensory_mu
Offset for sigmoid gating of
sensory inputs.

Shifts the input-response curve for sensory
neurons.

10 sensory_w
Weights for sensory inputs to
neurons.

Determines how much influence each input
dimension has on the neurons.

dx(t)
dt

= −
x(t)
τsys

+ g(x(t), I(t), t, θ) ⋅ A (9)

f x(t)
τsys = τ

1+τ⋅f(x(t),I(t),t,θ)

11 sensory_erev Reversal potential for sensory
input synapses.

Sets the equilibrium potential for sensory-
driven currents.

12 input_w
Linear scaling weights for
sensory inputs.

Multiplies raw input values before applying
additional transformations.

13 input_b Bias for sensory input mapping.
Adds a constant offset to sensory inputs after
scaling.

14 output_w
Linear scaling weights for
output neurons.

Determines how neuron states are combined to
produce the output.

15 output_b Bias for output mapping.
Adds a constant offset to the output after
scaling.

Parameter Categories

Intrinsic Properties:

gleak : Leak conductance

vleak : Leak reversal potential

cm : Membrane capacitance

Recurrent Dynamics:

w : Weight matrix of recurrent connections

sigma : Activation standard deviation

mu : Activation mean

erev : Reversal potential for recurrent connections

Sensory Inputs:

sensory_w : Weight matrix for sensory inputs

sensory_sigma : Standard deviation of sensory activations

sensory_mu : Mean of sensory activations

sensory_erev : Reversal potential for sensory inputs

External Inputs:

input_w : Weight matrix for external inputs

input_b : Bias for external inputs

Output Mapping:

output_w : Weight matrix for output mapping

output_b : Bias for output mapping

Quantifiable Relationships Between Parameters

Irecurrent = w ⋅ (σ ⋅ activation(µ, V)) (a)

Experiments and Results

An experiment was designed to simulate time-series prediction task using synthetic data.

The input feature consists of two signals: a sine wave and a cosine wave, both sampled over

a length of . These input signals were generated using and functions over a

range of to . The target output is a sine wave with double the frequency of the input

sine signal, generated over the same length. The input features were organized as a batch of

size 1, resulting in a shape of , while the target output was reshaped to have a

shape of . A visualization of the data reveals the relationship between the input

signals and the target output, providing insight into the patterns the model is expected to

learn.

Fig 3: Training Data

For this experiment, the model employed a fully connected wiring scheme with 8 units, one

of which was designated as a motor neuron to produce the output signal. This configuration

Isensory = sensory_w ⋅ (sensory_σ ⋅ activation(sensory_µ, V)) (b)

Iinput = input_w ⋅ Input + input_b (c)

Output = output_w ⋅ State + output_b (d)

dV

dt
=

gleak ⋅ (vleak − V) + Irecurrent + Isensory + Iinput

cm
(e)

N = 48 sin cos
0 3π

(1, 48, 2)
(1, 48, 1)

was implemented using the FullyConnected wiring class. The model architecture consisted of

two main layers: an input layer to accept sequences of two input features (sine and cosine

waves) and the LTC layer with the defined wiring. The output of the LTC layer was configured

to return sequences to match the time-series format of the target data.

Fig 4: LTC model architecture

Neuron Types:

Motor Neuron (1): This neuron generates the output of the model, acting as the final layer. It

connects to all other neurons to compute the output.

Interneurons (7): These neurons are recurrently connected and interact with each other. They

capture temporal dependencies and dynamics within the LTC layer.

Sensory Neurons (2): These neurons handle the input data, connecting the input features (sine

and cosine waves) to the interneurons.

The model was compiled using the Adam optimizer with a learning rate of 0.01 and a mean

squared error loss function, which is suitable for regression tasks.

Analysis

1. Upon training the model, the recurrent weight matrix looks like:

Fig 5: Recurrent weight matrix

This represents the strength of connections between the neurons in the recurrent network.

Each element w[i, j] in the matrix defines the weight of the connection from neuron j
to neuron i .

Matrix Interpretation:

Rows correspond to the receiving neurons.

Columns correspond to the sending neurons.

The value of each element w[i, j] :

Positive values indicate excitatory connections (enhancing the activity of the receiving neuron).

Zero or near-zero values imply weak or no connection between the neurons.

This visualization highlights how the network neurons interact and provides insights into the

model's temporal dynamics.

2. Next, we look at the impact of varying the leak conductance parameter (gleak) on the

neuron dynamics in the LTC model. By adjusting gleak to di"erent values (0.1 , 0.5 , and

1.0) and observing the model's predictions, the analysis highlights how this parameter

influences the temporal behavior of the network.

Fig 6: Varying gleak values

The results are visualized in a plot where the state values over time are compared for each

gleak value. Lower gleak values result in slower decay or prolonged activity, while higher

values lead to faster decay and reduced persistence of neuron states.

3. The next experiment explores the e"ect of perturbing sensory parameters in the LTC

model on its output dynamics. Three key sensory parameters were modified:

sensory_w : The sensory weights, scaled by factor of 2.0.

sensory_mu : The sensory mean, shifted by adding 0.2.

sensory_sigma : The sensory standard deviation, broadened by a factor of 1.5.

Fig 7: Sensory Parameter Perturbations

1. Scaling sensory_w (Sensory Weights):

These weights determine how strongly the input features influence the neurons. Scaling

them a"ects the magnitude of the contribution from sensory inputs, thereby altering the

overall network output. Smaller weights reduce the input's influence, while larger weights

amplify it.

2. Shifting sensory_mu (Sensory Mean):

The mean (mu) represents the baseline or threshold for input activation. Shifting mu
changes the input's bias, altering when and how the neurons respond to the inputs. For

example, increasing mu requires larger input signals to achieve the same level of neuron

activation, hence modifying the activation threshold.

3. Broadening sensory_sigma (Sensory Standard Deviation):

The standard deviation (sigma) controls the sensitivity to input variability. Broadening

sigma (e.g., scaling by 1.5) increases the range over which inputs influence the neuron,

potentially smoothing the response and making the network less sensitive to small changes

in input.

These changes illustrate the interpretability and flexibility of the LTC model. The

perturbations allow us to observe how specific parameter adjustments influence the

temporal behavior and outputs of the network.

4. The next experiment conducts a global sensitivity analysis to evaluate the impact of

perturbing individual trainable parameters in the LTC layer on the model's output. By

applying small random perturbations to each parameter and measuring the resulting

change in the model's predictions, the sensitivity of each parameter is quantified.

Fig 8: Global Sensitivity Analysis

The sensitivity score for a parameter is computed as the mean absolute di"erence between

the model's output with the perturbed parameter and the original output. This analysis

provides insight into which parameters have the most significant influence on the model's

behavior, helping to identify key components of the LTC dynamics.

5. Finally, I explore the relationship between the trained parameters in the LTC layer by

examining their pairwise correlations. The parameters include both neuron-specific values

(e.g., gleak , vleak , cm) and connection-specific values (e.g., w , sigma , mu , and

sensory parameters). Each parameter is extracted, flattened, and padded to ensure

consistent lengths for correlation computation.

A correlation matrix is calculated to capture the degree of linear association between all

pairs of parameters. This matrix provides insights into how changes in one parameter might

relate to changes in another, highlighting dependencies or redundancies in the model's

learned dynamics.

The correlation matrix is visualized as a heatmap, with parameter names labeled along the

axes. Colors indicate the strength and direction of correlations:

Red tones represent strong positive correlations.

Blue tones indicate strong negative correlations.

White or neutral tones signify little to no correlation.

This visualization provides a clear and interpretable overview of parameter interactions within the LTC

layer.

Fig 9: Correlation heatmap between the parameters

Discussion

The experiments conducted using the Liquid Time-Constant (LTC) model o"er us valuable

insights into its behavior, interpretability, and e"ectiveness in capturing temporal dynamics

in a time-series prediction task. The use of synthetic data, combined with targeted

parameter modifications, highlights the model's ability to adapt to complex temporal

relationships and provides a framework for understanding its internal mechanisms.

Through the visualization of the recurrent weight matrix, we observe how the strength of

connections between neurons facilitates the propagation of temporal information. The

analysis of neuron dynamics with varying gleak values demonstrates how the leak

conductance regulates signal decay, influencing the stability and responsiveness of the

network. Moreover, the perturbation of sensory parameters (sensory_w , sensory_mu ,

sensory_sigma) reveals the flexibility of the LTC model in adjusting its sensitivity to input

features. The ability to scale, shift, and broaden the influence of input signals underscores

the adaptability of the model and its potential for handling diverse data patterns. These

experiments validate the LTC's capability to integrate input signals in a controlled and

interpretable manner.

The global sensitivity analysis further emphasizes the importance of individual parameters,

identifying key contributors to the model's predictive behavior. This systematic evaluation

helps prioritize parameters for fine-tuning and o"ers insights into the LTC's inner workings.

Similarly, the exploration of parameter correlations provides a broader understanding of

interdependencies within the model, revealing potential redundancies or synergies that

could inform future model refinements.

Overall, the experiments demonstrate the LTC model's robustness and interpretability. The

ability to analyze its parameters and their interactions enables a deeper understanding of its

temporal dynamics, making it a powerful tool for time-series prediction tasks. These

observations also align with the model's design to emulate biologically inspired dynamics.

Future work could extend these findings to complex real-world datasets and explore more

complex wiring configurations to further enhance the model's applicability.

Few other observations based on experiments I ran, but didn't include in the blog:

On simple synthetically derived datasets, vanilla RNNs do as well as LTCs, as there isn't much

complexity. However, on more complex datasets, LTCs outperform RNNs. This is because

LTCs can adapt their time-constants to the data, while RNNs cannot. This is a key property

that makes them more powerful than vanilla RNNs. Some of the other important advantages

of LTCs that I could conclude from my experiements and literature were:

Bounded Dynamics: Ensures the state remains finite.

Adaptivity: The time constant dynamically adjusts based on input and state.

Expressivity: The nonlinear modulation enables modeling of complex temporal patterns.

Limitations

While Liquid Time-Constant (LTC) models show significant promise in capturing temporal

dynamics and performing well across various time-series prediction tasks, they also come

with notable limitations that warrant further investigation:

1. Long-Term Dependencies: Like many other time-continuous models, LTCs face

challenges in capturing long-term dependencies due to the vanishing gradient problem

during gradient descent training. This issue, highlighted in studies by Pascanu et. al. (2013)
[5], limits their applicability in tasks that require learning patterns over extended temporal

sequences.

2. Choice of ODE Solver: The performance of LTCs is heavily influenced by the choice of

numerical implementation methods for solving the underlying ordinary di"erential

x(t)

τsys

Liquid Neural Networks Introduction Background Methods Experiments Discussion

equations (ODEs). While advanced variable-step solvers enable strong performance, using

simpler methods like the explicit Euler solver can significantly impact their e!ciency and

accuracy. This dependency on solver choice introduces variability in their e"ectiveness.

3. Time and Memory Complexity: LTCs, while highly expressive, incur substantial time and

memory costs during training and inference. In comparison, Neural ODEs[6]are faster but

lack the expressive power of LTCs. The trade-o" between computational complexity and

model expressiveness highlights the need for further optimization of LTC architectures to

make them more resource-e!cient while retaining their powerful representational

capabilities.

References

1. Chahine, Makram, et al. "Robust flight navigation out of distribution with liquid neural networks."

Science Robotics 8.77 (2023): eadc8892. https://www.science.org/doi/full/10.1126/scirobotics.adc8892

2. Hasani, Ramin, et al. "Liquid time-constant networks." Proceedings of the AAAI Conference on Artificial

Intelligence. Vol. 35. No. 9. 2021. https://ojs.aaai.org/index.php/AAAI/article/view/16936

3. Beer, R. D. (1995). “On the dynamics of small continuous-time recurrent neural networks.” Adaptive

Behavior, 3(4), 469–505 https://doi.org/10.1177/105971239500300405

4. Maass, Wolfgang. "Liquid state machines: motivation, theory, and applications." Computability in

context: computation and logic in the real world (2011): 275-296.

https://www.worldscientific.com/doi/abs/10.1142/9781848162778_0008

5. Pascanu, R. "On the di!culty of training recurrent neural networks." arXiv preprint arXiv:1211.5063

(2013). https://proceedings.mlr.press/v28/pascanu13.html

6. Chen, Ricky TQ, et al. "Neural ordinary di"erential equations." Advances in neural information

processing systems 31 (2018). https://arxiv.org/abs/1806.07366

© 2024 Nidhish Sagar. nidhishs@mit.edu

https://www.science.org/doi/full/10.1126/scirobotics.adc8892
https://ojs.aaai.org/index.php/AAAI/article/view/16936
https://doi.org/10.1177/105971239500300405
https://www.worldscientific.com/doi/abs/10.1142/9781848162778_0008
https://proceedings.mlr.press/v28/pascanu13.html
https://arxiv.org/abs/1806.07366

